Model-Driven Development for Service-Oriented Applications

Vladimir Shcherbina
Agenda

- MDA
- SOA and SOMA
- SOMA Evolution
- SOMA Latest Development
 - SOMA-ME
 - CBS/CBA
 - Integration and Transformation
 - RS4C/PANDOORA
 - IBM's end-to-end SOA Method
- Conclusions
Model Driven Architecture is…

- A standard specification defined by a consortium of companies, managed by the OMG

- A set of technologies that enables you to automate the application of standards throughout the development lifecycle
 - Automate the creation of a Design Model from an Analysis Model
 - Automate the creation of Code from a Design Model, etc.

- A technical solution to keep the Domain Model of a project independent of the hardware and software technologies upon which it is built, so that the Domain Model can be rapidly redeployed to emerging technologies
Primary Concepts of MDA

- **CIM (Computation Independent Model)**
 - The traditional domain model, independent of architectural component structures

- **PIM (Platform Independent Model)**
 - The architectural models (micro design) to support design concepts/best practices independent of the implementation technology links

- **PSM (Platform Specific Model)**
 - The micro design typed for the specific implementation technologies
 - Some also view this as the actual forward engineered code

- **Model Transforms (or Transforms for short)**
 - Process (automated executable) for converting one model to another model for the same system
 - For example, a transform to generate the Design Model (PIM) from the Analysis/Domain Model (CIM)
Without MDA work products are manually produced

Architects require deep knowledge of object-oriented design, patterns, and application architecture.

Implementers require deep knowledge of OO programming best practices and application architecture.

Use Case Model → Analysis Object Model → Design Object Model → Code
MDA automates the application of architecture standards in Design

Use Case Model

Analysis Object Model

Execute PanDOORA Analysis-Design Transform

Design Object Model

Execute PanDOORA Design-Code Transform

Code

- Automatically applies the proven PanDOORA architecture
- Generates up to 50% of the design model
- Reduces the amount of expertise required by the design team to achieve the same results as a more experienced team
MDA enables more code generation than XDE/Rose provided in the past

- Generates Java code from the PanDOORA Design Model, automatically producing 60%+ of the code base
SOA Various Perspectives Focus on Different Attributes

“SOA in context …”

- A set of services that a business wants to expose to their customers and partners, or other portions of the organization
- An architectural style which requires a service provider, requestor, and a service description
- A set of architectural principles, patterns, and criteria which address characteristics such as modularity, encapsulation, loose coupling, separation of concerns, reuse, composability, and single implementation
- A programming model complete with standards, tools, and technologies such as Web Services
Service-Oriented Modeling Objectives

Just as OOAD is necessary to define object-oriented systems and component-based development is used to define component-based architectures, **service-oriented modeling is necessary to define a service-oriented architecture.**

While SOA builds on well-established software architecture principles (for example, information hiding, modularization and separation of concerns), it also adds additional aspects; thus, service-oriented modeling needs additional techniques for these new aspects.
SOA Modeling Constructs

Business Flows
(Processes, Orchestration, Choreography)

Services
Atomic and Composite

Service Components

SOMA was created to specifically address modeling (analysis, identification, and specification) of all three constructs.
Limitations of Traditional Approach

Traditional methods do not address **SOA key elements**: services, flows, and components realizing services, which means:

- Explicitly address the **identification, specification and realization** of services, their flows and composition
- Appreciate the distinct requirements of 2 key roles in a SOA: the **service provider** and service consumer
- Applications assumed to be built for one enterprise must be exposed to business partners who might **compose, combine, and encapsulate** them into new applications
SOA Reference Model
Solution View
SOMA Activities Are Grouped into Three Major Steps

At the heart of SOMA is the identification and specification of services, components, and flows.

<< Input from: Business Componentization/Analysis >>

Identification of Candidate Services and Flows

Specification of Services, Components, and Flows

Realization Decisions

<< Output to: SOA Implementation >>
SOMA. Initial Approach.
SOMA. Initial Approach.

- Domain decomposition that exploits Component Business Modeling (CBM) maps
- Successful in domains, where industry assets were well developed:
 - Financial – IFW
 - Insurance - IAA
- Top-down process of manual selection and customization of appropriate models and processes in asset catalogs
 - Results: high level description of identified business services and corresponding components in the enterprise.
- Significant gap between created SOMA service definitions and required IT artifacts
SOMA is an end-to-end SOA Method for the identification, specification, realization and implementation of services (including information services), components, flows (processes/composition).
SOMA New Disciplines Based on Field Experience

- **Integration & Transformation**
- **Composite Business Services & Applications**
- **Info Arch Perspective**
- **Assets & Industry Models**
- **Variation Oriented Analysis**
- **Solution Templates & Patterns**
- **Business Rules & Policies**

Our focus today

- **Extend End-to-end Architecture**
 - Build-test-deploy
 - Monitor-manage

SOMA New Disciplines Enablement of Monitoring & Management

- **Construction, Generation & Assembly**
- **Testing: Unit, Integration, UAT**
- **Deployment (& Packaging)**

Governance

- **Identification of Services, Components, and Flows**
- **Specification of Services, Components, and Flows**
- **Realization Decisions, Solution Templates & Patterns, Architecture, Technical Feasibility**
- **Implementation**

Our focus today

- **Identification of candidate Services, Components and Flows**
- **Specification of Services, Components, and Flows**
- **Realization Decisions, Solution Templates & Patterns, Architecture, Technical Feasibility**
- **Implementation**

Governance

- **Input from: Business Analysis & Existing Assets**
- **Implementation**
 - **Construction, Generation & Assembly**
 - **Testing: Unit, Integration, UAT**
 - **Deployment (& Packaging)**

Enablement of Monitoring & Management
SOA Solution Method & Tooling: SOMA & SOMA-ME

- Provides a cohesive linkage of models, methods, tools and content to support asset-based development of SOA solutions (Engagements, AS Factory, CBS…)

- Builds on the SWG tool-chain already in use by our practitioners, with significant research contributions

Operational Architecture

Application Architecture

Business Architecture

- **Integration of Industry Ontologies**
 - CBM-SOMA Common Metamodel
 - CBS design patterns and normative guidance
 - Artifact-centric design patterns (from MDBT)

- **SOMA Modeling Environment**
 - SOMA Profile, Templates and Guidance

- **Rational Software Architect/Modeler**
 - Work Product Generation

- **Pattern-based Code Artifact Generation**

- **Discovery of data artifacts and information metadata**

Research Contributions

- GBS Intellectual Capital
- SWG Tool-chain & Runtime
- Joint Efforts

Business Activity Monitoring & Performance Management

SOA Solution Method & Tooling: SOMA & SOMA-ME

- Provides a cohesive linkage of models, methods, tools and content to support asset-based development of SOA solutions (Engagements, AS Factory, CBS…)

- Builds on the SWG tool-chain already in use by our practitioners, with significant research contributions
SOMA Modeling Environment - An Overview

- Adds SOMA support to **Rational Software Architect** and **Rational Software Modeler**.

- Based on **SOMA** and **SOA Solution Stack**
 - Extends UML meta-model for SOMA methodology - **UML 2.0 Profiles** for SOMA.
 - Provides **Model Template** suitable for SOMA phases and activities.
 - Automates repeatedly performed tasks with MDD enhancements for SOMA - **Transformations and Patterns**.
 - Reduces effort and duration drastically with SOMA **Work Product Generation** capabilities.
 - Ease modeling with **User Interfaces** to create SOA/SOMA model elements.
 - **Model Validation** for completeness and consistency.
Capability: SOA Solution Stack Pattern-based SCA Module Generation in RSA

- Leverages Rational Transformation Framework (RSA) & IGS Pandoora (WIP)
- SCA realization of SOA Solution Stack (S3) artifacts developed using SOMA
- New research algorithms for
 - Optimized service specification
 - Flexible bindings/realization

SOA-oriented RSA artifacts

RSA Plug-ins

S3-compatible UML Models

Business Process
e.g., WBM

import

RSA w/ SOMA-ME plug-in

import

WID

Continue Development

WID

import

SCA Assembly Patterns & Normative Guidance

SCA transformation connects abstract business process definitions to deployed code

WID

Individual SCA Modules

Stored in XML

RSA Module Package

continue

Development

continue

Development

Import

WBM

import

WID

import

RSA w/ SOMA-ME plug-in

import

WID

Continue Development

WID

import

SCA Assembly Patterns & Normative Guidance

SCA transformation connects abstract business process definitions to deployed code
Composite Business Services and Applications. WBSF.

- WBSF enables following steps:
 - Assemble Composite Business Services – defining business policy and subscribers models in OWL
 - Deploy CBS into client environment – defining provision service model
 - Manage lifecycle of CBS – enabling service monitoring and configuration

- WBSF development process is asset-based and highly dependable on existing metadata. There is a goal to enable an automatic transformation from Business Services models to WBSF metadata
WBSF. Proposed Model Transformations in RSA

1. CBM UML profile model -> SOMA ME/or any other SOMA UML model -> SCA Modules or SCA components test configurations
2. Service Entitlement Model\(^1\)->UML-OWL Profile model->OWL assertions/channels/roles for specific services (WSDLs)
3. Industry models (IFW, IAA, etc.)->WBSF Industry Content Packs
4. Service Ts&Cs/SLA ->UML Service Entitlement Model\(^1\)->Tivoli TLM/TUAM/TCAM artifacts
Integration and Transformation. The Model Driven Integration Framework

- **Built On Model Driven Architecture (MDA)**
 - Defined by the Object Management Group (OMG)
 - Open industry standard, widely accepted
 - Based on UML, the de-facto modelling standard
 - Mature, proven tools available (Rational Software Architect, etc.)

- **Works on different levels of abstraction**
 - Enables mapping between different model views
 - Integrates well with SOA/SOMA models
 - Enables code generation to application environments
 (Application Servers, BPMS, SOA etc)

- **Built on the Eclipse Platform**
MDIF is based on a Layered Architecture with a Single Representation (Inventory) Of The Problem Space

Description

- **Views** provide the means to create, view and update controlled subsets of the contents of the Inventory.
- The **Inventory** stores the metadata. It supports versioning, access control and assumes ownership of the contents is distributed.
- A **Transformation** reads metadata from the Inventory and combines it with a template to generate an Artefact.
- An **Asset** is a “document” that is directly useful to the project. It could be a report or runtime code/XML or test program. It is considered read-only.

Implementation

- Context, Service or Component Views, Sequence Views, Architectural Patterns, Structural Metadata, WSDL extracts, DDL, SQL, Cobol Copybooks, IDL, otherDefs, Non-Functional Requirements, Constraints, AST
- Implemented in RDF/OWL uses inference for impact analysis. Traceable back to source view.
- Build in XSLT or Java uses the inventory as the only input.
Using MDIF in Legacy Systems Transformation

These views have not been imported into the inventory, this will limit the artifacts that can be generated.

Each view is a part of the problem definition.

The inter-view dependencies are kept intact during view discovery and are found in the inventory.

Filters are used to identify artifacts that can be generated from the views imported into the inventory.

Artifacts represent a part of the problem solution.
Combine with Techniques such as SOMA enabling reuse of existing functionality

- Domain Decomposition (Top-down Analysis)
- Existing Asset Analysis (Bottom-up Analysis)
- Goal-Service Modeling

MDIF Integrates these Views
R4SC – Recipe for Service Creation a.k.a. PANDOORA

Part of the IBM EAD4J framework. It provides:

- Customizable model for design/architecture to client specific domain
- MDA transform for automating the development of design models/code from analysis model details.

Pilot MDA transforms in RSA format cover the following:

- Analysis-Design Transform automates development of class diagrams within the Design Model
- Design-Code Transform currently supports design model to Java transform
- PANDOORA for SOMA MDA transforms are under development.
What is PanDOORA: A set of project accelerators comprised of software engineering best practices, reference architecture, project planning aides, and code components for building e-business Applications

- Application Reference Architecture for e-business and related common component designs (accelerates project start-up and design by 1000 hours)
- Rational Rose best practices and templates based on the application architecture
- Estimating models based on project metrics from past PanDOORA solutions
- Logging, exception handling, caching, session management, security, EAI, etc. code components (accelerates project design/implementation by as much as 1500 hours)
- Training curriculum for applying PanDOORA throughout the development process.
- Project plan templates for iterative object-oriented methods applying PanDOORA

Reference Architecture
Reference Architecture Rational Rose Template & Best Practices Documentation
Common Application Framework (CAF)
Reference Architecture Training Curriculum
Reference Architecture Estimating Tool
Reference Architecture Project Plan
Reference Architecture Resource Development Plan
IBM's end-to-end SOA Method

- Extension of SOMA into implementation, testing, deployment, monitoring and management
- It concentrates on integration with IBM GS Method and RUP and integration with other activities such as MDIF and PANDOORA
- MDD/MDA model-to-text transforms can help here in order to synchronize SOMA models with GSM Work Products
MDD Opportunities

- MDD based tooling in order to automate end-to-end SOMA development in WBSF environment
 - SOMA-ME Integration with WBSF
 - OWL-UML transformation pack in SOMA area
 - Tivoli TLM/TUAM/TCAM artifacts generation in order to enable a monitoring of “Return on Investment for SOA”
 - MDD support for Industry Models

- Other
 - Legacy SOA Realization - MDIF
 - Information Architecture - support for WIS (not covered here)
Questions
Thank You

Merci

Grazie

Danke

Obrigado

Merci

Thank You

Merci

Grazie

Danke

Obrigado

Merci

Grazie

Danke

Obrigado

Merci

Grazie

Danke

Obrigado

Merci

Grazie

Danke

Obrigado