A Theory of Data Race Detection

Utpal Banerjee, Zhiqiang Ma, Brian Bliss, Paul Petersen

Intel Corporation
Outline

• Introduction
• Basic Concepts
• Race Detection With Limited History
• Algorithms
• Conclusion
Introduction

- Consider a programming environment where a number of threads are active simultaneously.
- The instructions in these threads can be arbitrarily interleaved.
- If two threads access the same location x in shared memory and at least one of the accesses is a ‘write,’ then the final outcome of the program may depend on the order of the two accesses.
- This is another way of saying that a data race may exist in x.
The Devil Is In The Details

- Showing that a data-race exists may not be enough, you also need to know how to fix it
- Software is written using many layers of abstraction
- Because of this it may be difficult to understand the reason for a data-race without knowing the dynamic context (i.e. call stack)
 - Consider memory accesses in memcpy()
 - This is equally true for accesses by both threads
 - Do not forget the allocation point of the memory being accessed
Perfect or Practical?

• The cost of the analysis algorithm can limit
 – Amount of extra detail one can afford to keep
 – Applications that can that be analyzed

• An analysis algorithm be perfectly correct
 – But can be unusable because it does not fit into the limits of the computer being used

• The purpose of this paper and presentation is to describe a rigorous mathematical theory in which the tradeoff between the kinds of data races that can be detected versus the amount of access history kept
Basic Concepts

- Thread
- Segment
- Synchronization Operation (Sync Op)
- Posting Sync Op
- Receiving Sync Op
- Precedes
- Parallel
Partial Order Graph

Figure 1: Segment S of Thread T precedes Segment S' of Thread T'.
Race Detection With Limited History

• Focus on a location x in shared memory that is accessed at least once during an execution of the given program

• Let there be n accesses to x during this execution
 – Let $\{S_1, S_2, \ldots, S_n\}$ denote the chronological sequence of segments (of threads in the program) for these accesses
 – Each entry in this sequence corresponds to one access
 – For example, the 4th and 5th accesses to x both came from the same segment S, we will have $S_4 = S_5 = S$.

• When the full access history is available
 – Let S_j be the current segment that has just accessed x
 – Let S_i be the previous segment to access x
 – If S_i and S_j are parallel we have a data race in x
 • Assuming one of the accesses is a write
Race Detection With Limited History (2)

• Due to space constraints it may not be possible to keep all the segments that have already accessed x at each point during program execution.
 – When we find a segment S_j that has just accessed x, a subset of the segments $S_1, S_2, \ldots, S_{j-1}$ may be available for comparison.

• Since we cannot expect to capture all data races that may be present in x, the important question is:
 – When there are data races in x, are we always able to report that at least one such race exists?
 – The answer depends on which subset of segments from the set $\{S_1, S_2, \ldots, S_{j-1}\}$ are available for comparison with S_j.
Algebra of Parallel Segments

- The algebra of parallel segments makes a limited record-keeping scheme viable.
- Two segments causing a race that are ‘far apart’ in the sequence \(\{S_k\} \), may force a race between two segments that are often relatively ‘close’.
- When the goal is to detect if there is at least one race, it is enough to look for races between close pairs of segments.
- You only need to keep a few segments that have accessed \(x \) in the ‘recent’ past.
Adjacent Parallel Segments

Lemma 6. Let \(\{S_1, S_2, \ldots, S_n\} \) denote the chronological sequence of segments that have accessed a memory location \(x \). Let \(i, q_1, q_2, \ldots, q_t, j \) denote integers such that \(1 \leq i < q_1 < q_2 < \cdots < q_t < j \leq n \). If the segments \(S_i \) and \(S_j \) are parallel, then the segments in at least one of the \((t + 1)\) pairs:

\[
(S_i, S_{q_1}), (S_{q_1}, S_{q_2}), \ldots, (S_{q_{t-1}}, S_{q_t}), (S_{q_t}, S_j)
\]

are parallel.

In particular, if \(i, q, j \) denote integers such that \(1 \leq i < q < j \leq n \), and the segments \(S_i \) and \(S_j \) are parallel, then either \(S_i \) and \(S_q \) are parallel, or \(S_q \) and \(S_j \) are parallel (or both).
Adjacent Conflict Detection

Theorem 7. If there is an access conflict in x, then there must exist at least one adjacent conflict in x.

- An access conflict in x exists between two segments S_i and S_j, where $1 \leq i < j \leq n$, if the segments are parallel.
- An access conflict between S_i and S_j is called an adjacent access conflict, or simply an adjacent conflict, if the segments are also consecutive in the sequence $\{S_k\}$, that is, if $i = j - 1$.
- Only need to record the last read or last write
- This algorithm fails to predict a race in x, when there are races, but no adjacent races (only adjacent input conflicts).
Local Conflict Detection

- In the segment sequence \{S_1, S_2, \ldots, S_n\} that access x
 - a member \(S_k\) is a read-segment if it reads x, or
 - a write segment if it writes x
- Consider any fixed member \(S_j\) for 1 < \(j\) ≤ \(n\)
- Segment \(S_i\) in the subsequence \{\(S_1, S_2, \ldots, S_{j-1}\}\)
 - Is the last-read segment of \(S_j\), if \(S_i\) reads x and
 - The segments \(S_{i+1}, S_{i+2}, \ldots, S_{j-1}\), if any, do not
- Similarly, \(S_i\)
 - Is the last-write segment of \(S_j\), if \(S_i\) writes x and
 - The segments \(S_{i+1}, S_{i+2}, \ldots, S_{j-1}\), if any, do not
- An access conflict in x between two segments \(S_i\) and \(S_j\)
 - Where 1 ≤ \(i\) < \(j\) ≤ \(n\)
 - Is a local access conflict, or simply a local conflict
 - If \(S_i\) is either the last-write or the last-read segment of \(S_j\)
Local Conflict Limitations

Theorem 9. If there is an output conflict in \(x \), then there must exist at least one local output conflict in \(x \).

Theorem 10. If there is an input conflict in \(x \), then there must exist at least one local input conflict in \(x \).

Theorem 11. If there is a flow conflict in \(x \), then there must exist at least one local output or one local flow conflict in \(x \).

Theorem 12. If there is an anti conflict in \(x \), then there must exist at least one local input conflict or one local anti conflict in \(x \).
Near Adjacent

• To remedy the deficiency of the Local Conflict Detection Algorithm, we explored what, if any, clues are given by an anti conflict when it does not force a local race.
• We define a special class of anti conflicts that are more general than adjacent conflicts.
• An anti conflict in x between two segments S_i and S_j, where $1 \leq i < j \leq n$, is near-adjacent, if for each k in $i < k < j$, the segment S_k reads x and is parallel to S_i.
• An adjacent anti conflict is clearly near-adjacent

Theorem 15. If there is an anti conflict in x, then there must exist at least one local output conflict or one near-adjacent anti conflict in x.
Race Detection Algorithm

• For a memory location x
• Finds all dependences
 – local output
 – local flow
 – near-adjacent anti
• It can always detect if there is a data race in x

Repeat until program execution comes to an end:
$S \leftarrow$ the next segment to access x;
If S writes x
 then
 if $S^w \parallel S$
 then report a local output conflict in x,
 if $R \neq \emptyset$
 then
 for each $S' \in R$ such that $S' \parallel S$
 report a near-adjacent anti conflict in x,
 set $R \leftarrow \emptyset$,
 set $S^w \leftarrow S$;
else (i.e., if S reads x)
 if $S^w \parallel S$
 then report a local flow conflict in x,
 delete each member of R that is not parallel to S,
 put S in R.
If at least one conflict of type output, flow, or anti has been reported, then
 report that there is a data race in x,
else
 report that there is no data race in x.
Conclusion

• All of the detection algorithms can be used in a practical situation with different goals in mind.

• The Intel® Thread Checker uses Local Conflict Detection
 – Trade off the ability to always detect data races
 – Allows conservation of memory usage
 – Keep the history of two previous accesses to a memory location
 • The Thread Checker manages to detect the existence of a data race in a vast majority of situations
 • Only misses a R->W data-race when masked by a R->R access

• The last near-adjacent read segment and last write segment is sufficient to detect at least one data race if races are present