

airConn: A framework for tiered services in public wireless LAN hot-spots

Arup Acharya, Chatschik Bisdikian, Archan Misra
IBM Corp.
Thomas J. Watson Research Center
Hawthorne, NY 10532, USA
{arup, bisdik, archan}@us.ibm.com

Young-Bae Ko
School of Information and Computer Engineering
Ajou University
Suwon, South Korea.
youngko@ajou.ac.kr

Abstract — Access to data services via wireless LANs at private and public “hot-spot” sites is becoming commonplace. The goal of the airConn project is to define an architecture and a prototype implementation that enables the provision of premium and non-premium service tiers for both transient and non-transient users of wireless hot-spots. airConn provides for dynamic renegotiations of service tiers and facilitates various billing modes. It, thus, enables service providers to increase their revenue opportunities via multiple, flexibly manageable service offerings.

I. INTRODUCTION

With the standardization and product maturity of license-free wireless technologies, we are witnessing a rapid increase in alternative opportunities that users have in accessing Internet services at home, in the office, and anywhere in between. Appearing first at business and academic buildings and campuses and then at homes, wireless access solutions based on the IEEE 802.11 family of standards [1] are mushrooming at many different places where people congregate like airports, hotels, cafés, train stations and parks. These public congregation areas constitute connectivity islands, or hot-spots, where broadband access services can be provided wirelessly to one’s personal devices, like notebook computers and PDAs. The providers of access services at the public hot-spots, referred to Wireless Internet Service Providers (WISPs), range from home hobbyists, to start-ups, to established communication services providers.

The “home-grown” providers understandably provide a single service offering, that of a basic best-effort access to the public Internet. However, even for-profit WISPs also provide the same single service as well, e.g., [2], [3]. The provision of only one service makes it hard for service providers to differentiate amongst themselves. Even though, for profit WISPs provide better and more predictable level of service to their users than the home-grown providers, we believe that richer service offerings and service differentiation is one of the fundamental enablers for the successful WISP operation. Otherwise, the availability of basic, free-access offerings from the home-grown providers, be they are intentional or unintentional, just around the corner creates a compelling connectivity alternative for the mobile users.

To facilitate the offering of differentiated, or tiered, services to users of public hot-spots by (for profit) WISPs, we have developed an easily replicable and extendable networking frame-
work which we have coined \textit{airConn} (for airport connectivity). In this paper, we highlight this framework as well as a testbed that we have built with off-the-shelf components based on this framework. The \textit{airConn} framework supports differentiated access to value-added networked services in a public hot-spot setting. It allows mobile users to select a desired service tier impulsively from a list of dynamically managed set of service offerings. The framework is based on an add-on, server-side control mechanism that does not require any significant modification to an existing wireless network installation and is able to ensure appropriate access privilege for mobile users in a scalable manner.

The \textit{airConn} framework can be applied to both mobile users that have prior subscription relationship with a WISP and to those that do not, referred to as \textit{transient} users, allowing WISPs to offer dynamically changeable, extra services. These extra services may be present in certain locales that the WISP operates, or may be changing dynamically allowing the WISP to differentiate their offerings in a timely fashion. The multi-tiered service offering capability of the framework allows service providers, e.g., WISPs, and property owners, e.g., airport owners and operators, to derive additional revenue opportunities from the operation of the wireless network. For example, an airport operator could make deals with content providers to offer premium content to the users of a specific service tier at the hot-spots. The assignment of services to the various tiers may be further made at a WISP’s or property owner’s discretion permitting them to emphasize or de-emphasize multiple revenue generating alternatives based on various criteria like temporal, spatial, or competitive criteria.

Public access can be provided through wireline LAN technologies, e.g., IEEE 802.3, as well, or other personal wireless technologies like the Bluetooth wireless technology [4]. However, it is the undisputed convenience of untethered communications using the 802.11 technologies that drives this space. Thus, even though the \textit{airConn} framework is applicable to these other access technologies as well, we will present our work under the guise of an 802.11-based hot-spot set-up.

The rest of the paper is organized as follows: Section II describes the architectural framework and design motivation for \textit{airConn}. Section III describes the information flows experienced during the various \textit{airConn} communication phases. Section IV describes a reference implementation of our framework. We conclude in section V with some closing remarks.

II. THE \textit{AIRCONN} FRAMEWORK

The deployment of hot-spots is expected to enjoy a healthy upswing over the next few years, up to over 150,000 installations by 2005 from a mere 1,200 in 2001 [5]. The \textit{airConn} framework aims in exploiting the existing and anticipated installed base of these hot-spots. Hence, it has been central to the framework’s philosophy that \textit{airConn} should be seen as a value-add that does not seek to replace existing installations, but rather enhance their capabilities to support dynamically selectable service tiers. It has been thus left judiciously outside the scope of \textit{airConn} any methods that specifically aim at defining how users become eligible in accessing the hot-spot network in the first place. The latter process is typically defined by the WISPs themselves. The framework aims in minimizing user intervention by taking advantage of open standards, but it does not dictate any specific methods that would require providers to fundamentally change the way they accept users to their networks.

Next, we highlight the main design objectives of \textit{airConn}.
The design goals of the airConn framework

The airConn framework focuses on a solution that permits providers of public networked services to offer different service tiers. To use these services, users are assumed to use their own devices to select and adjust dynamically a desired service tier on a per-use basis, even during an ongoing airConn session. To achieve and maintain an enhanced user experience and also to facilitate the addition of the framework to existing (legacy) hot-spot installations, this capability should require no airConn-specific modifications on the user devices.

An additional design goal is an enforcement mechanism that is applicable in the communications infrastructure that supports such public service offerings. The enforcement mechanism should be applicable to either the communication elements, such as routers and wireless access points, or other higher layer traffic controllers, such as Web proxies. The enforcement mechanism ensures that individual users are allowed to access only those services that are within the service tier that they have most recently selected and are denied access to all services that do not fall within that tier. The enforcement mechanism may further be supplemented by means to alert users of their attempt to access a particular service that does not fall within their currently selected tier, and means by which users may dynamically renegotiate their desired service tiers so that they can access new services whenever desired.

A further design goal is to permit users a degree of mobility and roaming within the hot-spot area. In particular, users should be allowed to recover their communication sessions following temporary communication interruptions. The interruptions may result from various reasons like momentary loss of connectivity due to a move outside the coverage range of an access-point, a device reboot, or a transition to a different point of attachment, either wireless or wireline, within the same hot-spot area.

It is an additional design goal for the airConn system to facilitate payment policies that charge users relative to the service they have selected and accessed. These payment policies are based on various criteria including the degree of user activity in terms of the amount of traffic transferred to and/or from the user, or the duration for which a selected service tier is provided (i.e., the session time).

The CHOICE architecture [6] shares a number of the goals of the airConn framework. However, airConn and CHOICE have fundamentally different design philosophies. With CHOICE, both the access enablement (e.g., authentication process) and traffic control are integrated. All communications in a CHOICE network require a CHOICE-specific protocol. Operation in a CHOICE-enabled network requires, at a minimum, firmware and software modifications both to the user devices and the traffic control elements. The airConn framework separates between access enablement and service access control. By focusing only on the latter, it can be retrofitted to current and future hot-spot installations independent of how the former is being addressed by the WISP.

Functional elements of the airConn framework

During an airConn communication session at a hot-spot area, the following phases are experienced:

1. **Personal device configuration**: During this phase, user devices are properly configured and permitted access to the hot-spot site’s intranet.
2. **User registration**: During this phase, users provide identification credentials to the system. These could be provided explicitly, where a user explicitly provides personal information, or implicitly, where a pointer to a stored log-on profile is provided by the users or their devices.

3. **Service access control**: During this phase, the *airConn* intelligence configures the hot-spot site’s intranet to allow users to access only services within the service tier that they have selected.

4. **Session management**: This is a supervisory activity that keeps track of user sessions including their service tier selections, the duration of accessing services at a selected tier, or traffic statistics.

These four phases of the framework are shown in Figure 1, with the logical/physical entities, e.g., servers and networking elements, responsible for them numbered accordingly. The figure also shows additional third-party services, like accounting and authentication, that may interact with the framework but are not part of it.

Figure 1: The phases of the airConn framework

Following the user registration, users will be able to access the services that they have selected. How these services are further organized into various tiers may be based on:

- the locality of the services, e.g., services specific for users of an airport, hotel, conference center, shopping mall, train stations, etc.;
- how a service provider desires to organize them, which may dependent, for example, on how the providers make deals with local or remote content providers;
- the time of day, or various promotional incentives.
III. THE INFORMATION FLOW IN THE airConn SYSTEM

In this section, we will highlight the information flows anticipated by the airConn framework that were summarized in Figure 1. Note that some of the information exchanges that take place during phase 1 may be of proprietary nature. These exchanges are outside the scope of the airConn framework. The framework is only concerned with the fact that by the end of phase 1, a user’s device will have obtained, among other things, all the necessary network configuration parameters, e.g., using standard DHCP procedures. We will not discuss this phase further.

In the figures that follow next, activities and processes in dashed lines have not been implemented in testbed system discussed later.

1) Initial access to airConn

![Figure 2: Initial access to airConn](image)

Figure 2 shows the interaction between a user and the airConn “registration server.” This interaction takes place typically during the initial contact of a user with the airConn-enabled system. However, it could happen at a latter time as well, e.g., whenever the user renegotiates its service tier, or reconnects to the system following a device reboot.

The server inspects the incoming request for log-on identification metadata, e.g., a Web cookie that was set-up during a previous visit of the user to an affiliated airConn installation. The use of the identification metadata enables a user to easily rejoin a recently interrupted airConn session. More interestingly, it may enable a user to establish a transient temporal and spatial relationship with participating airConn providers. Such will be the case, for example, when a user enters an airConn-enabled establishment. Based on the activity of the user, the user may be offered promotional and personalization opportunities at additional participating airConn-enabled establishments she visits next.

When identification metadata are available, the registration server extracts them and sends
them for additional processing. The objective of the additional processing will be to associate any available personalization information (stored in a user profile repository) that could be tied to these metadata. The user profile repository may contain transient information created during recent visits of the user to participating *airConn* locations. This facilitates in providing a better user experience at subsequent user visits at a hot-spot, like a particular airport. It is worth noting here that users at airports are not “everyday” users. They travel occasionally through the airport, so the notion of transient user profiles may be quite applicable. For example, when a business traveler pass through an airport en route to a destination, she may be expected to pass through the same airport on the way back a few days later. Thus, maintaining user session statistics for a few days (or weeks) may be a reasonable way to maintain a good user experience without over-burdening the storage resources of the service provider.

Finally, the registration server returns a “Welcome page” to the user, which could contain a combination of payment, service tiers choices, and other information possibly personalized to each individual user.

2) *Setting-up the infrastructure*

![Figure 3: Setting-up the infrastructure](image)

Figure 3 shows the information flows following a user selecting a service tier. When a profile repository is maintained, the user’s profile is updated to reflect the user’s tier choice. Then, the registration server sends configuration commands to the various controllable network elements, e.g., access points, routers, or proxies, in the hot-spot site’s intranet. These commands will cause an update of their network traffic-flow control parameters (e.g., routing tables), which will permit traffic from a user to access only those services in the tier that the user has selected.
3) Accessing destinations

Figure 4 shows the information flow following a user selecting a destination. Based on the service tier that a user has previously made, see Figure 3, traffic control elements in the hot-spot site’s intranet will inspect whether the destination chosen by the user belongs to a service tier that the user has selected. If yes, then access to the particular destination is allowed. If not, the course of action depends on the application used to access the destination, and whether that application can provide feedback to the user. For example, consider a case where a stand alone MP3 player application on a notebook computer is used to access a (for fee) on-line music repository. If this repository does not belong to the service tier selected by the user, the connection may simply be dropped. Alternatively, a prerecorded MP3 file may be downloaded and audibly inform the user that the selected destination is not available for the selected service tier. Alternatively, a third medium may be used for feedback information, for example, an SMS (short message service) message may be used, if a user has registered its SMS service number with airConn.

If the application used is a Web browser, then any attempt to access a destination not included in the service tier selected by the user may result in a Web page returned with an appropriate message. Furthermore, the user may be redirected automatically or manually to the tier selection Web page on the registration server, where the user may be given the option to modify her selection of service tier. Note that Web page redirection techniques can also be used for newcomers to an airConn-enabled establishment to be directed to the “Welcome page” after they start their Web browsers.
4) Ending a session

Sooner or later the user will terminate its use of airConn and leave. Figure 5 shows the information flows when this happens. The figure contains two alternatives that there may exist. One in which the user explicitly clicks the “I’m leaving!” button on her browser, and one where the user simply leaves the premises. No matter which event triggers the termination of an airConn session, what happens afterwards is the same. We first discuss about the common operations occurring after a session termination has been declared.

Following a session termination, the registration server will first collect session statistics. Assuming that the user is not charged with a prefix price, these pertinent session statistics will include the session duration and, possibly, the bandwidth used during the session. In case that the user has renegotiated a new service tier during her session, the session statistics will include the time and bandwidth pertinent with each one of the service tiers that she has used during her session.

After the session statistics have been collected from the various network elements involved, the registration server can now instruct these network elements to clear their state pertinent to this user. The airConn system may now pass the session statistics information to a third party for the proper billing procedures. Finally, if any profiles are legitimately maintained, they can also be updated at this time, for example: user A visited airConn at location B, selected tiers C and D for x and y amounts of time, respectively.

As mentioned earlier, session termination is closely related to customer billing and network “resetting.” If a user has purchased service for a specific time block, e.g., for 24 hours, then billing is straightforward and will be based on this fact. If, however, the user has not specified a time block, and instead the user has chosen to be charged based on usage, e.g., total time spent or bandwidth consumed, means need to be provided for monitoring the continuous presence of the
user in the system. This could happen actively, by having an airConn system monitoring (ping) devices periodically to see whether they are still available, or passively. In our testbed implementation, discussed in the next section, we have chosen the latter as it is more robust and enjoys the scalability benefits of a distributed system.

The session management entity in the registration server may use information received from the DHCP server to terminate the user session immediately or at a later time. Late termination of the user session may be desirable to give the opportunity to the user to “return” back to its session following a temporary interruption, for example, due to temporary hibernation of the user’s computer.

IV. AN airConn REFERENCE IMPLEMENTATION BASED ON NETWORK LAYER ENFORCEMENT

In this section, we present our testbed implementation of the core functions of the airConn framework. It focuses on the networking aspects of the framework, including device configuration, tier selection, access control and enforcement, and collection of session statistics. The design choices made for this implementation are as follows:

1. User devices should require no extra “client” code to exploit the value-add features of airConn. Thus a server-based solution will be adopted. For the user devices, we will assume they are capable of IP-based communications and running a Web browser application.

2. Access control could be applied in principle at any level of the protocol stack, MAC, IP, application/proxy level, etc. However, MAC layer access control is technology-dependent and binary (allows/disallow a device). It is intended for authentication/connectivity control and not service access control. It will be handled by emerging standards, e.g., IEEE 802.1x, [7], IEEE 802.11i. Access control via Web proxies apply only to HTTP transported traffic and it is not applicable to general traffic streams; it can also lead to bottlenecks as all Web traffic will need to pass through them. Applying access control directly on the individual servers and services is not scalable and not practical, since not all services are under the direct control of the WISP itself. Therefore our implementation focuses on access control at the IP layer using the routing elements in the hot-spot site’s intranet. This gives us a high-degree of flexibility in controlling traffic from users, as identified by their IP address, by imposing controls on the destination IP address and/or the port number of their transmissions, thus enabling access control at various levels including per application class.

3. Session maintenance and user mobility in the hot-spot site is managed using cookies. As each readjustment of the service tier by a user will require a visit to the “Welcome page” of the WISP, a session cookie may be used to reestablish the user credentials fast.

4. To collect usage information per user session, we opted to use adjustable DHCP leases which enabling us to detect when a user moves. Furthermore, we collect traffic statistics by interrogating the routing elements about the traffic statistics that they maintain.

A. The testbed implementation

As mentioned earlier, this implementation is based on filtering packets at the routers intercon-
necting the wireless access points and services. When a device first enters the network, i.e., is within range of a wireless access point, it executes the DHCP protocol to obtain an IP address and configure network parameters such as the address of the DNS server or the next hop router. Having obtained an IP address, a user device is initially allowed to communicate only with the registration server.

The next step consists of the user starting a Web browser application on her device and communicating with a well-known URL. This URL is advertised out-of-band. This requirement stems from the fact that we do not modify the client software in any way. If we are allowed to install a logon client utility on the user’s device, it may be then possible to send this URL as an option parameter within a DHCP message. We may then extract this URL from the DHCP message and automatically start the browser pointing to this URL, thereby eliminating any user participation. We have indeed developed such a client utility. Since airConn connectivity does not depend on the presence of this utility, its existence does not violate our design goal of no extra client code. In either case, the client machine sets up a Web connection with the registration server and the “Welcome page” from its displays the available service tiers. The user then selects a desired service tier and provides some payment information, e.g., credit card or frequent flyer number, to be charged for the service. This transaction can be secured using typical secure HTTP procedures.

By the end of registration, the registration server will have activated additional packet filtering rules on the router in accordance with the selected service tier and user’s IP address.

Figure 6: The airConn testbed

The airConn testbed implementation is shown in Figure 6. The service tiers are represented by two Web servers: the Gold and the Silver server. The hot-spot site’s intranet is represented by the network with addresses in the 10.0.0.y range. The default packet filtering rules at the router disallow any packets from a user device to cross the router. When a user device enters the network, it receives an address from the 10.0.0.y subnet via DHCP. Initially, only the registra-
tion/DHCP server is accessible to any user device via the access point. Once network connectivity to the registration server is established, the user starts the Web browser application and accesses the “Welcome page” of the registration server. Users then select the desired service tier (Gold or Silver in this case) and provide a credit card number to enable the service. The Gold service allows access to both servers while the Silver service allows access only to the Silver server. If the user selects Gold service, then the registration service installs a packet filtering rule at the router to allow packets from the client IP address to IP addresses of both Gold and Silver service: this is represented as access to 10.1.0.0/16 in the router rules in Figure 6. However, if the Silver service is selected, then the filter rule installed allows access only to 10.1.2.0/24 (i.e., the Silver server).

For the airConn router, we use a notebook computer running Linux (configured with routing capabilities). We use the iptables module \cite{8} that allows per-host routing of the traffic passing through the notebook computer. Whenever a new user registers with the registration server, the registration server issues remote configuration commands (using the `rsh` (remote shell) commands) to the `iptables` daemon on the router, thereby setting up the appropriate routing tables. In Figure 6, we highlight some of the `iptables` configuration commands that we have used for setting up routing rules on the router during network initialization, router configuration, and routing rule reset. The communication path between the registration server and the router can be secured through a combination of means including IPSec, using secure shell (`srsh`) to send commands from the registration server and the router, and adding a MAC level `iptables` filter that may restrict any traffic destined to the router itself to have as its origin the registration server. Since users access the wireline portion of the network over a wireless link, they can see no traffic that occurs between the registration server and the router because the access point can easily double as a bridge level filter for this traffic as well. Likewise no wireless airConn user can see the MAC address of the registration server further enhancing the security level of the core airConn network.

Upon termination of a user’s access session, the registration server collects the usage statistics from the router regarding bandwidth usage (in terms of packet and byte counts). It also collects session duration times using information it obtains from the DHCP server which we have modified to signal the registration server whenever the lease time of an IP address expires without renewal. By assigning small enough leases, we control the “granularity” of determining the exact departure time of a user from the hot-spot. This approach takes advantage of the standard DHCP procedures where a device will automatically request renewal of its lease, as the lease time termination approaches. In the absence of a request to renew a particular IP address, the DHCP server can conclude that the user is not available any more and it can then notify of the registration server of this event.

Our airConn testbed has been built from off-the-self components. The servers and the router used were Linux-based laptop computers. Specifically, we have used Red Hat Linux ver. 7.1, on a 366 MHz, Pentium II machine with 228 MB to implement the airConn router. Even with such a small system, we have shown in \cite{9} that the router is capable to handle the processing of as many as 2,000 routing conditions without discernable reduction in system performance.

\section{Concluding Remarks}

In this paper, we have introduced a framework, called airConn, for supporting dynamically se-
lectable service tiers in public, wireless hot-spot sites. The airConn framework has been designed to leverage rather than replace existing and future hot-spot installations, while at the same time require no modification of end-user devices.

Although necessary, to achieve the design goals for airConn, we found that simply using open standards is not sufficient. Instead, we found necessary to consider the connection of a user device to the wireless network and the eventual access to services as two distinct procedures. The former procedure is more relevant to a network provider’s responsibilities, while the latter procedure is more relevant to the actual service (e.g., content) provider. Both of these procedures are necessary to provide a complete end-to-end service enablement and typically they are both provided by the same entity, the WISP. However, to provide higher flexibility and differentiation of service offerings, this may not always be desirable. In a hot-spot, it is entirely possible that a property owner may want to exercise a close control on the services offered on their premises. By viewing the network access and content access as two separate (although not necessarily independent) procedures, it permits a lot of flexibility as to how services can be packaged and offered in dynamically managed tiers. With this separation in mind, the airConn objectives were realized by empowering end-users, when they dynamically select a desired service tier, to control in an immediate, yet indirect and controlled manner the networking elements of an airConn installation.

Research in the areas of hot-spot deployment and service offering and management is expected to continue to mature in the upcoming years. By building our airConn testbed using off-the-self components, we came into the realization that it would take a reasonable amount of effort to set-up a simple yet functional research environment. With such an environment available research experimentations in this area can easily proceed. We envision research activities covering several areas in this space can be performed using and strengthening the airConn framework. These activities can span diverse areas including: access to the network like zero configuration, mobility, seamless roaming, and security; user management like transient users and user profiling; and content and service management like remote and local storage, service level agreements between property owners and content providers, and service brokering.

REFERENCES